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ABSTRACT

We have shown previously that herpes simplex virus 1 (HSV-1) lacking expression of the entire glycoprotein K (gK) or express-
ing gK with a 38-amino-acid deletion (gK�31– 68 mutation) failed to infect ganglionic neurons after ocular infection of mice. We
constructed a new model for the predicted three-dimensional structure of gK, revealing that the gK�31– 68 mutation spans a
well-defined �-sheet structure within the amino terminus of gK, which is conserved among alphaherpesviruses. The HSV-
1(McKrae) gK�31– 68 virus was tested for the ability to enter into ganglionic neuronal axons in cell culture of explanted rat gan-
glia using a novel virus entry proximity ligation assay (VEPLA). In this assay, cell surface-bound virions were detected by the
colocalization of gD and its cognate receptor nectin-1 on infected neuronal surfaces. Capsids that have entered into the cyto-
plasm were detected by the colocalization of the virion tegument protein UL37, with dynein required for loading of virion cap-
sids onto microtubules for retrograde transport to the nucleus. HSV-1(McKrae) gK�31– 68 attached to cell surfaces of Vero cells
and ganglionic axons in cell culture as efficiently as wild-type HSV-1(McKrae). However, unlike the wild-type virus, the mutant
virus failed to enter into the axoplasm of ganglionic neurons. This work suggests that the amino terminus of gK is a critical de-
terminant for entry into neuronal axons and may serve similar conserved functions for other alphaherpesviruses.

IMPORTANCE

Alphaherpesviruses, unlike beta- and gammaherpesviruses, have the unique ability to infect and establish latency in neurons.
Glycoprotein K (gK) and the membrane protein UL20 are conserved among all alphaherpesviruses. We show here that a pre-
dicted �-sheet domain, which is conserved among alphaherpesviruses, functions in HSV-1 entry into neuronal axons, suggesting
that it may serve similar functions for other herpesviruses. These results are in agreement with our previous observations that
deletion of this gK domain prevents the virus from successfully infecting ganglionic neurons after ocular infection of mice.

Herpes simplex virus 1 (HSV-1) encodes at least 26 tegument
proteins and 11 virally encoded glycoproteins, as well as sev-

eral nonglycosylated membrane-associated proteins. Viral glyco-
proteins gD, gB, gH, and gL serve critical roles in virion entry
(1–5). Virion entry is initiated by the binding of glycoproteins gB
and gC to glycosaminoglycan (GAG) moieties of cell surface pro-
teoglycans (6). This initial attachment causes the interaction of gD
with one or more of its specific receptors, including the herpesvi-
rus entry mediator (HVEM) (HveA), nectin-1 (HVEC), and 3-O-
sulfated HS. In addition, gB binds to PILR-�, NMHC-IIA, and
myelin-associated glycoprotein (MAG) receptors (7). HSV-1 en-
ters into neurons strictly via a pH-independent fusion of the viral
envelope with neuronal plasma membranes (8–10), while it can
enter a wide range of nonneuronal cells via either pH-indepen-
dent or pH-dependent endocytosis (11). Fusion of the viral enve-
lope with cellular, including neuronal, membranes causes deposi-
tion of the viral capsid into the cytoplasm, which is subsequently
transported to the cell nucleus. Virus entry into all cells involves
the coordinated functions of the glycoproteins gD, gB, gH, gL, and
gC. Initial binding of gD to the nectin-1 receptor is thought to
alter interactions of the gH/gL complex with gB, triggering gB-
mediated fusion of the viral envelope with plasma membranes
(reviewed in reference 12).

The UL20 and UL53 (gK) genes are highly conserved in all
alphaherpesviruses and encode proteins of 222 and 338 amino

acids, respectively, each with four membrane-spanning domains
(13–17). HSV-1 gK is posttranslationally modified by N-linked
carbohydrate addition at the amino terminus of gK, while the
UL20 protein (UL20p) is not glycosylated (13, 15, 18). HSV-1 gK
and UL20 functionally and physically interact, and these interac-
tions are necessary for their coordinate intracellular transport, cell
surface expression, and functions in virus-induced cell fusion, vi-
rus entry, virion envelopment, and egress from infected cells (16,
19–29). The gK/UL20 protein complex interacts with gB and gH
and is required for gB-mediated cell fusion (30, 31). HSV-1 gK is a
structural component of virions and functions in virion entry (26,
32). Deletion of amino acids 31 to 68 within the amino terminus of
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gK inhibits virus-induced cell-to-cell fusion and virus entry with-
out drastically inhibiting virion envelopment and egress. More-
over, deletion of gK amino acids 31 to 68 inhibited virus-induced
cell fusion caused by syncytial mutations in gK and entry into
PILR-�-expressing Chinese hamster ovary cells (30, 33). We have
shown that gK is essential for neuronal infection and virulence
(34). Specifically, we have reported that gK-null virus was unable
to infect axonal termini and egress from neuronal cell bodies (8).
In addition, we have recently shown that the HSV-1(McKrae)
gK�31– 68 virus, specifying gK with a deletion of amino acids 31
to 68, was unable to efficiently infect mouse trigeminal ganglia
after ocular infection of scarified mouse eyes (35). These results
indicate that the amino terminus of gK plays a pivotal role in
corneal infection and neuroinvasiveness.

HSV-1 as well as other viruses utilizes the intracellular micro-
tubular network, which is utilized to move intracellular cargo in a
retrograde manner toward the microtubule-organizing center
(MTOC) and nucleus, as well as in an anterograde manner toward
the cell periphery during maturation and cellular egress (36–40)
(Fig. 1). Cellular cargo is transported in a retrograde manner to-
ward the MTOC and the cell periphery in conjunction with the
dynein and kinesin motors, respectively. Intracellular cargo can
simultaneously bind to both dynein and kinesin and move bidi-
rectionally along microtubules. This dynein/kinesin competition
for intracellular cargo transport is highly coordinated within cells
to maintain subcellular organization (39, 41). In a similar fashion,
HSV-1, vaccinia virus, and adenovirus utilize the dynein-dynactin
motor complex for intracellular transport (37, 42–48). Also, sub-
stantial evidence suggests that a number of other viruses, includ-
ing African swine fever virus (ASFV) (49), canine parvovirus
(CPV) (50), influenza virus X-31 (51), human foamy virus (HFV)
(52), Mason-Pfizer monkey virus (M-PMV) (53), and rabies virus
(RV) (54), utilize the microtubular network for their intracellular
transport.

After fusion of the HSV-1 envelope with the host plasma mem-
brane, the tegumented capsids containing the viral genome are

released into the cytosol. The majority of the outer tegument pro-
teins remain at the plasma membrane along with viral glycopro-
teins, while inner tegument proteins, such as the UL36, UL37, and
US3 proteins remain attached to virion capsids (55, 56). HSV-1
tegument proteins UL36 and UL37 are strong candidates for bind-
ing to the dynein motor (57, 58). The HSV-1 UL37 is a 120-kDa
phosphorylated tegument protein expressed in both mature viri-
ons and light particles (59–62). UL36 (also called VP1/2) is the
largest capsid-bound tegument protein encoded by the Herpes-
viridae, containing 3,164 amino acids (63). The UL36 and UL37
proteins remain with capsids undergoing retrograde transport in
neuronal and epithelial cells, while the majority of the other teg-
ument proteins are absent from capsids during transport (36, 64,
65). Also, a lack of either UL36 or UL37 causes failure of retro-
grade transport of capsids to the nucleus (66). Recent evidence
indicates that pseudorabies virus (PRV) UL36 binds to dynein/
dynactin, facilitating microtubule transport, neuroinvasion, and
pathogenesis (67).

Resolving the structures of membrane proteins is challenging
mainly due to difficulties in overexpression, purification, and re-
assembly of membrane proteins into membrane-mimetic systems
for structural analysis. Consequently, �2% of structures available
in the Protein Data Bank (PDB) are membrane proteins. Compu-
tational methods, such as homology-based modeling, are instru-
mental in shedding light on the secondary and tertiary structures
of membrane proteins (68). Homology modeling is a well-estab-
lished technique to study protein functions and mechanisms (69,
70). For example, it can be used to investigate the pandemic po-
tential of mutant influenza viruses and rational antiviral drug and
vaccine design (71), find important amino acid residues through
computer-guided mutations (72), and elucidate protein-protein
interactions that are important for host-pathogen interactions
(73).

Here, we generated a new model for the predicted three-di-
mensional (3D) structure of gK by assembling individual domains
modeled separately into a full-chain model. This gK model reveals
highly conserved domains among alphaherpesviruses, including a
�-sheet structure that spans the gK�31– 68 deletion. We show
that the HSV-1(McKrae) gK�31– 68 virus is unable to enter into
neuronal axons in cell culture, in agreement with in vivo ocular
infections of mice, which indicated that the virus was not trans-
ported into trigeminal ganglionic neurons (35). Based on the con-
servation of gK predicted domains among alphaherpesviruses, we
suggest that gK may function to facilitate entry of other alphaher-
pesviruses into neurons.

MATERIALS AND METHODS
Cell lines and viruses. African green monkey kidney (Vero) cells were
obtained from the American Type Culture Collection (Manassas, VA)
and were maintained in Dulbecco’s modified Eagle’s medium (Gibco-
BRL, Grand Island, NY) supplemented with 10% fetal calf serum and
antibiotics.

HSV-1(F), VC1, wild-type (WT) McKrae, McKrae gK�31– 68, and
McKrae D4V5 viruses were used in this study. VC1 was engineered to
express gK with the V5 epitope inserted in frame immediately after amino
acid 68 of gK and a 3�FLAG epitope inserted in frame at the amino
terminus of UL20, as described earlier (26). HSV-1(McKrae �gK31– 68)
was engineered to express gK lacking 38 amino acids immediately after the
gK signal sequence (35), and gK�31– 68-D4V5 (D4V5) was constructed
by insertion of the V5 epitope tag at the carboxyl terminus of gK of HSV-
1(McKrae gK�31– 68) using double-red mutagenesis implemented on

FIG 1 Schematic representation of intracellular transport of virion capsids via
the cellular microtubular network. The virus enters the cell via fusion or en-
docytosis and is transported by dynein motors toward the nucleus (retrograde
transport), presumably by the interaction of dynein with one or more inner
tegument proteins. Kinesin transports the cargo toward the cell membrane
(anterograde transport).
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the viral genome cloned as an bacterial artificial chromosome, as de-
scribed previously (74).

Virus entry proximity ligation assay (VEPLA). Proximity ligation
assay (PLA) was performed as we have described earlier (75). Briefly, Vero
cells were grown on 8-well chamber slides (Nunc Lab-Tek II chamber
slide system) and infected with strain F virus at a multiplicity of infection
(MOI) of 10. The virus was allowed to attach to confluent monolayer of
Vero cells at 4°C for 1 h and shifted to 37°C to allow virus entry, and the
chamber slides were removed at time zero, 30 min, 2 h, 3 h, 6 h, 9 h, 12
h, and 16 h and fixed with ice-cold methanol for 10 min at �20°C.
Mouse antidynein antibody against intermediate-chain I (Abcam) and
rabbit anti-UL37 antibody (a gift from Frank J. Jenkins, University of
Pittsburgh Cancer Institute) were used for dynein/UL37 detection.
Mouse anti-gD antibody (Virusys, Inc.) and rabbit anti-nectin-1 anti-
body (Santa Cruz) were used as positive control for gD/nectin-1 inter-
action in Vero cells. Mouse antidynein antibody and rabbit anti-gM
antibody (a gift from Joel Baines, Louisiana State University) were
used as a negative control for detecting dynein/gM interaction. Mouse
monoclonal antibody against �-tubulin (fluorescein isothiocyanate
[FITC]) (Abcam), was used for microtubule detection. Duolink in situ
PLA probes, (anti-rabbit plus and anti-mouse minus) were added to
the samples (1:5 dilution) and incubated at 37°C for 1 h, followed by
ligation at 37°C for 30 min after washing with Duolink in situ wash
buffer A. Amplification solution (40 to 50 �l) was added, and slides
were incubated for 1.5 h at 37°C. Texas Red-labeled oligonucleotide
detection probes (Olink Bioscience) were used. The slides were subse-
quently washed with Duolink in situ wash buffer B twice for 10 min
each and once with 0.1� Duolink buffer B, followed by mounting with
mounting medium containing DAPI (4=,6=-diamidino-2-phenylin-
dole) (Duolink II), and stored at �20°C with protection from light
until confocal images were taken. The images were taken using a 60�
objective on an Olympus Fluoview FV10i confocal laser scanning mi-
croscope.

Quantification of PLA signal. The quantification of the fluorescent
signals was done using the SlideBook5 digital microscopy imaging soft-
ware (Intelligent Imaging Innovation, Denver, CO) (kind help was pro-
vided by Masami Yoshimura, Department of Comparative Biomedical
Sciences, Louisiana State University). The fluorescent images were im-
ported as TIF files into the SlideBook software. In order to quantify the
PLA signals, segment mask was done for both the PLA signals and DAPI-
stained nucleus. Both the size (number of pixels) and average intensity of
PLA signals were measured. The sum intensity (average intensity � num-
ber of pixels) of the PLA signals was divided by the area (in pixels) of the
nucleus. This value was calculated for WT McKrae gD/nectin, McKrae
gK�31– 68 gD/nectin-1, WT McKrae UL37/dynein, and gK�31– 68
UL37/dynein. Unpaired Student t test results showed that the two-tailed P
value for WT McKrae and McKrae gK�31– 68 gD/nectin-1 is 0.0738 (P 	
0.05), which is not statistically significant, and the two-tailed P value for
WT McKrae UL37/dynein and gK�31– 68 UL37/dynein is 0.0372 (P �
0.05), which is considered to be statistically significant. The efficiency of
virus entry for the data shown in Fig. 7 was calculated as E 
 number
fluorescent spots � intensity (UL37/dynein PLA)/number of spots � in-
tensity (gD/nectin-1 PLA); E (gK�31– 68)/E (McKrae) 
 0.58.

Infection of DRG neurons in cell culture. Embryonic day 18 (E18)
Sprague-Dawley rat dorsal root ganglia (DRGs) in specialized medium
including nerve growth factor (NGF) were obtained from BrainBits Inc.
and seeded on poly-D-lysine-coated 8-well culture slides (catalog number
354632; Becton Dickinson, Inc.) per the manufacturer’s instructions.
Neuronal cell cultures obtained from DRGs were highly enriched in neu-
rons. The DRG is surrounded by a connective tissue capsule and is histo-
logically composed of neuronal cell bodies, which are surrounded by sup-
portive cells (satellite cells). Satellite cells provide electrical insulation for
the pseudounipolar neurons in the ganglia. Neuronal extensions of these
DRG cultures are practically devoid of DRG-associated fibroblast or glial
cells. Consequently, the presence of fibroblast and epithelial cells sur-

rounding neuronal extensions was very sparse, constituting less than one
percent of the neuronal axonal projects in any microscope field examined.
Cultures contained glial cells, while they were largely devoid of fibroblast
and epithelial cells (not shown). Maintenance tissue culture medium con-
sisted of neural basal medium with B-27 supplement at the manufactur-
er’s recommended concentration (Invitrogen, Grand Island, NY). Me-
dium was supplemented with 50 ng/ml neural growth factor 2.5s
(Invitrogen), 2% normal rat serum (Invitrogen), 1% GlutaMAX (Invit-
rogen), and 0.2% Primocin (InvivoGen, San Diego, CA). The ganglia were
monitored regularly for axonal growth and cultured with neural basal
medium supplemented with neuronal growth factors. A healthy extension
of axons was observed at 7 days postseeding, and the ganglia were ready to
be infected. The medium was then removed, and 200,000 PFU of either
HSV-1(McKrae) or gK�31– 68 mutant virus was added to the ganglia.
The virus was removed after 1 h, and the slides were fixed with ice-cold
methanol for 10 min at �20°C. PLA assay was performed on these slides as
described above.

Immunogold labeling for TEM. Purified virions immobilized on 400-
mesh Butvar/carbon-coated nickel grids (Electron Microscopy Sciences,
Inc., Hatfield, PA) were used to detect the presence of gK and gD on the
virions using immunogold labeling, as we have described previously (26).
Briefly, the grids were incubated with 5 �l of mouse anti-V5 antibody
(Invitrogen) and anti-gD antibody (Virusys) at a dilution of 1:10,000 in
1% bovine serum albumin (BSA) in Tris-buffered saline (TBS) for 30 min
to detect gK and gD, respectively, followed by 30 min of incubation with 5
�l of goat anti-mouse IgG (whole molecule)–10-nm colloidal gold
(Sigma-Aldrich) at a 1:80 dilution in 1% BSA in TBS. A 2% solution of
sodium phosphotungstate (pH 6.8) was added as a final step for contrast
purposes. Grids were desiccated and visualized by transmission electron
microscopy (TEM). The number of virions scanned for each panel ranged
from 40 to 65. Not all virions were positive for immune gold particles. On
average, 10% of virions did not show the presence of any gold particles.

Virus purification. The virus was purified as we have described earlier
(26). Briefly, supernatants and cells from 10 T-150 flasks of Vero cells
infected with YE102-VC1(gK-EK-V5;UL20-3�FLAG), gK�31– 68, and
gK�31– 68-D4V5 viruses were collected at 36 h postinfection (hpi) and
purified by 50 to 20% discontinuous iodixanol gradients twice, followed
by a 20% iodixanol cushion. The resulting pellet was resuspended in 250
�l of NP-40 lysis buffer (Invitrogen) and used for immunoblot assay.

Immunoprecipitation and immunoblot assays. The HSV-1(F) virus-
infected lysate was immunoprecipitated with protein G magnetic Dyna-
beads bound to dynein antibody according to the manufacturer’s instruc-
tions (Invitrogen). The protein was eluted from the magnetic beads in 40
�l of elution buffer and used for immunoblot assays. Immunoblot assays
were carried out using anti-gB (Virusys), anti-UL37, goat anti-mouse–
horseradish peroxidase (HRP) (Abcam), and goat anti-rabbit–HRP
(Abcam).

Protein modeling of gK. The gK sequence was divided into do-
mains, and each part was modeled separately. Atomic structures were
built using Modeler (76) from template-target alignments calculated
by HHpred for transmembrane domains and by eThread (77) for the N
terminus and domain II. Subsequently, the individual components
were assembled into a full-chain model using Chimera (78) according
to the current understanding of the orientation of the domains with
respect to each other and the lipid bilayer. Loops and gaps in the
alignments were constructed by Modeler. Finally, the model of gK was
embedded in a POPC membrane (140 Å by 50 Å) composed of 170
lipid molecules using VMD (79) and PyMOL (PyMOL Molecular
Graphics System, version 1.2r3pre; Schrödinger, LLC); the entire sys-
tem comprises 18,887 nonhydrogen atoms.

RESULTS
Molecular modeling of the effect of the gK�31– 68 mutation on
the predicted structure of gK. We have reported previously that
the gK�31– 68 domain deletion did not adversely affect infectious
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virus production, although it inhibited the ability of syncytial mu-
tations in gB to cause extensive virus-induced cell fusion. In con-
trast, the smaller amino acid deletion gK�31– 48 and the larger
gK�31–117 mutation inhibited infectious virus production dras-
tically (30). To better understand the structural aspects of gK, we
constructed the 3D structure of gK by modeling individual do-
mains separately, followed by assembly of a full-chain model ac-
cording to the experimentally derived topography of gK in mem-
branes (16), as described in Materials and Methods. The model
revealed that the gK�31– 68 deletion spanned a well-defined pre-

dicted �-sheet structure within the amino terminus of gK that
when deleted did not appreciably change the overall structure of
the remaining amino terminus of gK. Also, the model predicted a
prominent 41-amino-acid alpha-helical domain spanning gK do-
main II located intracellularly (Fig. 2).

Glycoprotein gK�31– 68 is incorporated into virions. We
have shown that gK is expressed on virion particles (32) and that
insertion of the V5 epitope tag at the carboxyl terminus of gK, as
well as within selected internal sites of gK, did not adversely affect
overall viral replication and infectious virus production (16). To
detect the presence of gK�31– 68 within virions, we generated the
HSV-1(McKrae) gK�31– 68-D4V5 (D4V5) mutant virus express-
ing a V5 epitope tag inserted at the carboxyl terminus of gK using
double-red mutagenesis, as we have described previously (35) (see
Materials and Methods). The presence of gK on virion particles
was initially assessed using colloidal gold immunoelectron mi-
croscopy (Fig. 3A). An average of 50 virion particles for each virus
were inspected for the presence of gold particles. V5-tagged gK
was readily detected on most virion envelopes (	45 out of 50
visualized virions contained gold particles) for recombinant vi-
ruses VC1 (containing a V5 epitope tag within the amino terminus
of gK) and D4V5, while none of the gK�31– 68 virions contained
gold particles. Similarly, the anti-gD monoclonal antibody readily
detected gD on all virions (Fig. 3A). The presence of gK on virions
was confirmed in immunoblots of extracts from purified VC1 and
D4V5 virion extracts probed with anti-V5 antibody. VC1 gK pro-
tein species migrated with apparent molecular masses ranging
from 38 to 55 kDa, while D4V5 gK protein species migrated with
apparent molecular masses ranging from 45 to 55 kDa. There were
no gK protein species detected in HSV-1(McKrae) gK�31– 68 vi-
rion extracts (Fig. 3B). The V5-tagged gK was also detected on the
surface of infected cells via fluorescence-activated cell sorting
(FACS) (not shown).

The UL37 protein interacts with cytoplasmic dynein. UL36

FIG 2 (A) Predicted structures of gK and gK�31– 68. Transmembrane and
intracellular domains are shown in cyan and green, respectively. (B) The 3D
structure predicts a prominent �-sheet structure after the signal sequence. (C)
Structure of the amino terminus of gK�31– 68 (gK without 38 amino acids
[aa]).

FIG 3 Detection of gK�31– 68 on virion particles. (A) VC1(F), McKrae gK�31– 68, and McKrae D4V5 extracts from purified virions were reacted with anti-V5
antibody to detect V5-tagged gKs and visualized by immunogold transmission electron microscopy. Approximately 50 virion images were scanned for the
presence of immunogold particles on virion envelopes. Detection of gD was used for positive-control purposes, while the parent gK�31– 68 without a V5 tag on
its gK was used as negative control. (B) Extracts from purified virions were electrophoretically separated and immunoblotted with anti-V5 antibody to detect
V5-tagged gKs. The presence of gK species was detected in both VC1 (tagged with V5 within the amino terminus of gK) and D4V5 (tagged with V5 at its carboxyl
terminus), while no gK was detected in the untagged parental virus gK�31– 68.
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and UL37 are associated with capsids undergoing retrograde
transport in neuronal and epithelial cells. To test whether the
UL37 protein interacts with dynein, cell extracts from infected
cells were immunoprecipitated with antidynein antibody, and the
samples were immunoblotted and probed with both anti-UL37
and anti-gB antibodies. Dynein immunoprecipitates contained
the UL37 protein, detected as a protein species migrating with
molecular mass of 120 kDa (Fig. 4, band marked with an asterisk),
while dynein did not coprecipitate gB, which was used as a nega-
tive control. Additional negative controls included lysates from
uninfected Vero cells (Fig. 4).

Detection of UL37 interaction with cytoplasmic dynein and
development of the VEPLA. Cell surface-bound virions were de-
tected by monitoring interactions of virion gD with its cognate
receptor nectin-1 using PLA. Similarly, PLA was utilized to detect
UL37-dynein interactions to monitor viral capsids that have en-
tered the cytoplasm and bound dynein as the prerequisite step for
microtubular loading and retrograde transport (Fig. 5). Bright red
fluorescent signals were obtained when PLA detected colocaliza-
tion of gD with nectin-1 immediately after adsorption of the virus
for 1 h at 4°C (zero time point) on Vero cells. In contrast, PLA with
antibodies against dynein and UL37 did not detect colocalization
of UL37 and dynein at the zero time point (Fig. 6). UL37-dynein
colocalization was readily visible as early as 30 min after virus
entry, visualized as numerous bright red fluorescent spots in the
cytoplasm of infected cells. Glycoprotein M (gM) did not colocal-
ize with dynein at any time point tested (negative control). UL37-
dynein colocalization was detected at all times postinfection tested
except the zero time point. The distribution and density of fluo-
rescent spots revealing colocalization of UL37 with dynein
changed at 6 hpi, assuming a perinuclear distribution at 9 hpi. The
overall number and intensity of fluorescent spots dissipated after
12 hpi, and they were undetected at 16 hpi (Fig. 6).

We have shown previously that the gK�31– 68 virus enters
Vero cells with slower entry kinetics than the wild-type virus (26,
32). Virus entry proximity ligation assay (VEPLA) performed at 1
hpi revealed that both the wild-type virus and the gK�31– 68 virus
attached equally well to Vero cell surfaces. In agreement with pre-
vious findings, VEPLA revealed a marked reduction in gK�31– 68
virion entry in comparison to that of the wild-type virus, as evi-

denced by the significant reduction in the number and relative
intensity of fluorescent spots produced by colocalization of UL37
with dynein. The efficiency of virus entry was calculated as E 

number fluorescent spots � intensity (UL37/dynein PLA)/num-
ber of spots � intensity (gD/nectin-1 PLA); E (gK�31– 68)/E
(McKrae) 
 0.58 (Fig. 7).

The amino terminus of HSV-1 gK is required for the entry of
the virus into the DRG axons. Recently, we showed that gK, spe-
cifically the amino-terminal 38 amino acids of gK, which are de-
leted in the gK�31– 68 mutant virus, is required for the replication
and efficient spread of the virus to the trigeminal ganglion after
ocular infection of mice (8, 34). In addition, lack of gK caused an
inability of the virus to infect axonal termini separated from neu-
ronal somata in specialized microfluidic devices harboring puri-
fied ganglionic neurons (8). To directly test the ability of the
gK�31– 68 virus to enter axonal termini of ganglionic rat neurons
in cell culture, purified rat dorsal root ganglia (DRGs) seeded on
fluorescence microscopy slides were infected with either the HSV-
1(McKrae) virus originally isolated from patients suffering from
keratitis (80) or the gK�31– 68 virus, and VEPLA was performed
at 1 h postinfection (hpi). Both viruses attached to neuronal sur-
faces equally well, as evidenced by the number of fluorescent spots
produced by colocalization of viral gD with the nectin-1 receptor.
In contrast, there were no fluorescent spots detected on neuronal
axons infected with the gK�31– 68 virus, while numerous spots
were detected on neuronal axons infected with the McKrae wild-
type strain. Both viruses appeared to infect equally well glia cells
surrounding neuronal axons, as well as neuronal somata (Fig. 8).

DISCUSSION

Viral glycoprotein K (gK) and its interacting partner UL20 are
highly conserved among all neurotropic alphaherpesviruses, while
beta- and gammaherpesviruses do not specify gK or UL20 ortho-
logues. Therefore, our working hypothesis is that gK and UL20
function to facilitate successful infection of neurons. Here, we

FIG 4 Dynein interacts with UL37. Lysates from cells infected with HSV-1(F)
were subjected to immunoprecipitation as described in Materials and Meth-
ods. Negative controls included detection of gB (*) in dynein immunoprecipi-
tates and uninfected cell extracts.

FIG 5 Schematic representation of the virus entry proximity ligation assay
(VEPLA). Antibodies to UL37 and dynein are reacted with secondary antibod-
ies linked to proximity probe primers, that after annealing to connector prim-
ers and amplification by a rolling-circle mechanism are detected by a DNA-
intercalating fluorescent dye. A similar strategy was used to detect gD binding
to nectin-1, representing virions attached to cell surfaces (not shown).
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show for the first time that a deletion of a predicted �-sheet struc-
ture within the amino terminus of HSV-1 gK, conserved among
alphaherpesviruses, prevents the virus from entering into gangli-
onic axons, in agreement with previous findings that this gK de-
letion caused the inability of mutant viruses to infect ganglionic
neurons and establish latency after ocular infection of mice (35).

We generated a new model for the predicted three-dimen-
sional structure of gK by assembling individual domains modeled
separately into a full-chain model. This methodology has been
successfully applied to derive protein models of other viral mem-
brane proteins. For example, modeling of the structure of the
H7N9 hemagglutinin (HA) helped predict the potential of the
Chinese A/Hangzhou/1/2013 strain by predicting that the H7H9
strain could bind to human sialic acid receptors. The accuracy of
the results of this study was confirmed after the crystal structure of
the H7N9 HA protein was resolved later, leading to an almost iden-
tical structure with a root mean square deviation (RMSD) of only
0.721 Å over 305 atoms, while in vitro results showed binding capa-
bilities similar to the predictions (71). Importantly, computer-gener-
ated protein models can be used not only to predict the overall func-

tion of a protein but also to elucidate the molecular mechanism of
such function. For example, an X-ray structure of a four-helix bundle
in the H protein in parainfluenza virus type 5 (PIV5) was used to
model the H protein in the stalk region of the canine distemper virus
to investigate the conformational changes in viral fusion (F) protein
required for cell entry. Combining in vitro experiments and compu-
tational structure modeling ultimately led to the discovery of a new
model for activation of the fusion machinery utilized by morbillivi-
ruses (73).

To overcome the difficulty in predicting the three-dimensional
structures of multiple membrane-spanning proteins such as gK
and UL20, we predicted the structures of each gK domain (I to IV)
separately and assembled them into a full-chain structure. This gK
model produced a number of important structural features, in-
cluding a prominent �-sheet structure spanning the gK�31– 68
deletion in the amino terminus of gK and a 41-amino-acid �-he-
lical structure spanning gK domain II located intracellularly (Fig.
2). These predicted domains are conserved among alphaherpesvi-
ruses such as HSV-2 and others (Fig. 9 and unpublished data).
Syncytial mutations within the carboxyl terminus of gB do not
cause fusion in the presence of the gK�31– 68 deletion (30). In
addition, we have shown that the amino-terminal 82-amino-acid
domain of gK when expressed separately binds gB and comple-
ments the inability of the gK�31– 68 mutation to support gB-
mediated membrane fusion. These results suggest that gB-medi-
ated membrane fusion is regulated by interactions between the
amino termini of gB and gK (30, 31).

We have shown previously that gK is incorporated into virions

FIG 6 Kinetics of virus entry into Vero cells. Confluent monolayers of Vero
cells seeded in microscopy chamber slides were infected at an MOI of 10 with
wild-type virus HSV-1(F) and tested by VEPLA for cell surface-bound virions
(anti-gD/anti-nectin-1 antibodies) and cytoplasmic capsids at different times
postinfection at 37°C (anti-UL37/antidynein). Anti-gM and antidynein anti-
bodies were utilized as negative controls. The microtubules were visualized
using mouse monoclonal antibody against �-tubulin (FITC), shown in green.
DAPI (blue) was used for visualization of the nucleus, and the PLA signals were
seen as red spots.

FIG 7 McKrae gK�31– 68 virions enter more slowly than parental McKrae
virions in Vero cells. VEPLA was utilized to detect wild-type McKrae and
gK�31– 68 entry into Vero cells. Confluent Vero cell monolayers were infected
with either McKrae or gK�31– 68 viruses at an MOI of 10, and capsids that
entered the cytoplasm and virions bound to cell surfaces were detected at 1 h
postinfection with anti-UL37/antidynein and anti-gD/anti-nectin-1 antibod-
ies, respectively. The PLA signals were quantified using SlideBook 5 digital
imaging software. The efficiency of virus entry was calculated as E 
 number of
fluorescent spots � intensity (UL37/dynein PLA)/number of spots � intensity
(gD/nectin-1 PLA); E (gK�31– 68)/E (McKrae) 
 0.58.
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and functions in virus entry (26, 32). Furthermore, the gK�31– 68
deletion did not negatively affect infectious virus production (30).
Similarly, the D4V5 virus replicated efficiently in Vero cells,
achieving titers at 24 hpi that were similar to those of the parental
gK�31– 68 virus (not shown). The gK�31– 68 deletion includes

two N-glycosylation sites located within the amino terminus of
gK. The D4V5 gK�31– 68 gK migrated with a molecular mass of
45 to 55 kDa despite lacking both N-glycosylation sites. It has been
shown that gK migrates anomalously in SDS-PAGE due to its high
hydrophobicity and ability to multimerize (16, 18, 23). Character-
istically, boiling of gK SDS-PAGE samples prevents gK from en-
tering into gels. Heating up to 45°C for 15 min is typically utilized
to allow gK to enter into separating gels. Therefore, it is likely that
the observed gK�31– 68 molecular mass range of 45 to 55 kDa is
due to the overall gK�31– 68 structure, which causes anomalous
migration in SDS-PAGE.

Biochemical analysis and live imaging have strongly suggested
that the viral VP1/2 (UL36) and UL37 proteins interact with dy-
nein (66). In agreement with these findings, we detected interac-
tions of UL37 with dynein via PLA. PLA is a relatively simple tool
to detect potential protein-protein interactions. This technique
has been utilized for detecting infectious agents and proteins with
a sensitivity rated higher than even that of PCR (81). Interestingly,
PLA detected UL37-dynein interactions throughout the course of
infection of Vero cells. It is possible that UL37 may bind dynein to
prevent dynein interference and ensure efficient utilization of ki-
nesin-mediated anterograde transport during virion cytoplasmic
envelopment and egress.

Most virus entry assays depend on the expression of viral pro-
teins after deposition of viral DNA into the nuclei of infected cells
through detection of either viral antigens or marker genes, such as
green fluorescence protein expressed from the viral genome, or
the induction of marker genes such as �-galactosidase under
HSV-1 promoter control responding to expression of HSV-1 im-
mediate early proteins (33, 82, 83). However, these assays measure
the overall successful rate of infection and not necessarily the abil-
ity of virions to enter into the cytoplasm of infected cells, since
entering capsids may not be efficiently transported to the nucleus.
Detection of capsids in the cytoplasm of infected cells can be
achieved by high-power confocal microscopy and transmission
electron microscopy, with great difficulty in obtaining semiquan-
titative results. We describe here the development of the virus
entry proximity ligation assay (VEPLA) as a general method to
efficiently visualize and quantify the relative efficiency of virus
entry into the cytoplasm of infected cells in a time-dependent
manner by monitoring both enveloped virions attached to cell
surfaces and capsids in the cytoplasm that interact with dynein
prior to loading onto the microtubular network for retrograde
transport.

VEPLA was utilized to show that the gK�31– 68 mutation pre-
vented virions from entering into neuronal axons, in agreement
with our published results that this mutation caused the inability
to infect ganglionic neurons after ocular infection of mice (35). It
is likely that inhibition of virus entry reflects the inability of gB to
cause fusion of viral envelopes with axonal membranes in the
presence of the gK�31– 68 mutation. This is supported by our
previous results that the amino terminus of gK spanning the
gK�31– 68 mutation interacts with the amino terminus of gB
(30). Alternatively, the amino terminus of gK may enable binding
of virions to gK-specific receptors that are required for virus entry.
HSV-1 and HSV-2, as well as all alphaherpesviruses, infect neuro-
nal endings embedded into the epidermis and mucosal surfaces,
including the highly innervated corneal epithelium. Prediction of
the three-dimensional structures of gK specified by alphaherpes-
viruses shows remarkable primary and predicted tertiary struc-

FIG 8 The McKrae gK�31– 68 mutant virus is unable to enter DRG axons.
VEPLA was utilized to asses McKrae and gK�31– 68 virus entry into DRG
neurons in cell culture. Embryonic day 18 (E8) rat DRGs were collected and
seeded on polylysine-coated microscopy slides. DRGs were infected with WT
HSV-1 strain McKrae or gK�31– 68 at 6 days postseeding. The top and bottom
left panels show interaction between gD and nectin-1 on DRG axons infected
with WT McKrae and gK�31– 68 mutant viruses, respectively, as seen by the
presence of red spots along the axons (arrows). The top right panel shows the
interaction between UL37 and dynein in DRG axons infected with WT McK-
rae virus. There was no interaction detected between UL37 and dynein in DRG
axons infected with gK�31– 68 (bottom right panel). Neurofilament marker
(green) and DAPI (blue) were used to identify axons and the nuclei of glial
cells, respectively.

FIG 9 Prediction of the three-dimensional structures of the amino termini of
gK specified by HSV-1, HSV-2, VZV, and monkey B virus. The distal side of the
amino terminus of gK is colored yellow and is retained for comparison pur-
poses as background on all other frames. (A) HSV-1 gK. (B) HSV-2 gK. (C)
VZV gK. (D) monkey B virus gK.

Jambunathan et al.

2236 jvi.asm.org March 2016 Volume 90 Number 5Journal of Virology

http://jvi.asm.org


tures (unpublished data). Of particular interest to this study is
conservation of predicted structural domains within the amino
termini of gK specified by HSV-1, HSV-2, varicella-zoster virus
(VZV), and monkey B virus (Fig. 9). The �-sheet structure con-
tained within the gK�31– 68 deletion is conserved among these
viruses as well as other alphaherpesviruses (not shown), suggest-
ing that they may play a conserved role in infection of neuronal
axons.

Understanding of the role of gK in neuronal entry will enable
the production of new ways to ameliorate these infections, as well
as assist in the development of safe live-attenuated vaccines and
viral vectors to combat HSV and other infectious diseases. In sup-
port of this prediction, we have recently shown that the HSV-1
(VC2) vaccine strain containing the gK�31– 68 mutation pro-
tected mice against lethal intravaginal challenge with either viru-
lent HSV-1 or HSV-2 in mice (84).
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Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. 2012. Structural
rearrangements of the central region of the morbillivirus attachment pro-
tein stalk domain trigger F protein refolding for membrane fusion. J Biol
Chem 287:16324 –16334. http://dx.doi.org/10.1074/jbc.M112.342493.

74. Tischer BK, von Einem J, Kaufer B, Osterrieder N. 2006. Two-step
red-mediated recombination for versatile high-efficiency markerless DNA
manipulation in Escherichia coli. Biotechniques 40:191–197. http://dx
.doi.org/10.2144/000112096.

75. Jambunathan N, Chouljenko D, Desai P, Charles AS, Subramanian R,
Chouljenko VN, Kousoulas KG. 2014. Herpes simplex virus 1 protein
UL37 interacts with viral glycoprotein gK and membrane protein UL20
and functions in cytoplasmic virion envelopment. J Virol 88:5927–5935.
http://dx.doi.org/10.1128/JVI.00278-14.

76. Fiser A, Sali A. 2003. Modeller: generation and refinement of homology-

based protein structure models. Methods Enzymol 374:461– 491. http:
//dx.doi.org/10.1016/S0076-6879(03)74020-8.

77. Brylinski M, Lingam D. 2012. eThread: a highly optimized machine
learning-based approach to meta-threading and the modeling of protein
tertiary structures. PLoS One 7:e50200. http://dx.doi.org/10.1371/journal
.pone.0050200.

78. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM,
Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for
exploratory research and analysis. J Comput Chem 25:1605–1612. http:
//dx.doi.org/10.1002/jcc.20084.

79. Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dy-
namics. J Mol Graph 14:33–38. http://dx.doi.org/10.1016/0263-7855(96)
00018-5.

80. Wang H, Davido DJ, Morrison LA. 2013. HSV-1 strain McKrae is more
neuroinvasive than HSV-1 KOS after corneal or vaginal inoculation in
mice. Virus Res 173:436 – 440. http://dx.doi.org/10.1016/j.virusres.2013
.01.001.

81. Gustafsdottir SM, Nordengrahn A, Fredriksson S, Wallgren P, Rivera E,
Schallmeiner E, Merza M, Landegren U. 2006. Detection of individual
microbial pathogens by proximity ligation. Clin Chem 52:1152–1160.
http://dx.doi.org/10.1373/clinchem.2005.065847.

82. Simpson SA, Manchak MD, Hager EJ, Krummenacher C, Whitbeck JC,
Levin MJ, Freed CR, Wilcox CL, Cohen GH, Eisenberg RJ, Pizer LI.
2005. Nectin-1/HveC Mediates herpes simplex virus type 1 entry into
primary human sensory neurons and fibroblasts. J Neurovirol 11:208 –
218. http://dx.doi.org/10.1080/13550280590924214.

83. Reinhard H, Le VT, Ohlin M, Hengel H, Trilling M. 2011. Exploitation
of herpesviral transactivation allows quantitative reporter gene-based as-
sessment of virus entry and neutralization. PLoS One 6:e14532. http://dx
.doi.org/10.1371/journal.pone.0014532.

84. Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS,
Saied AA, Walker JD, Kousoulas KG. 2014. A single intramuscular
vaccination of mice with the HSV-1 VC2 virus with mutations in the
glycoprotein K and the membrane protein UL20 confers full protection
against lethal intravaginal challenge with virulent HSV-1 and HSV-2
strains. PLoS One 9:e109890. http://dx.doi.org/10.1371/journal.pone
.0109890.

gK Is Required for Neuronal Axonal Entry

March 2016 Volume 90 Number 5 jvi.asm.org 2239Journal of Virology

http://dx.doi.org/10.1016/j.chom.2013.01.009
http://dx.doi.org/10.1002/prot.24703
http://dx.doi.org/10.1002/prot.24703
http://dx.doi.org/10.1110/ps.051892906
http://dx.doi.org/10.1110/ps.051892906
http://dx.doi.org/10.1371/journal.pone.0102618
http://dx.doi.org/10.1371/journal.pone.0102618
http://dx.doi.org/10.1016/j.chom.2011.02.004
http://dx.doi.org/10.1016/j.chom.2011.02.004
http://dx.doi.org/10.1074/jbc.M112.342493
http://dx.doi.org/10.2144/000112096
http://dx.doi.org/10.2144/000112096
http://dx.doi.org/10.1128/JVI.00278-14
http://dx.doi.org/10.1016/S0076-6879(03)74020-8
http://dx.doi.org/10.1016/S0076-6879(03)74020-8
http://dx.doi.org/10.1371/journal.pone.0050200
http://dx.doi.org/10.1371/journal.pone.0050200
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1016/j.virusres.2013.01.001
http://dx.doi.org/10.1016/j.virusres.2013.01.001
http://dx.doi.org/10.1373/clinchem.2005.065847
http://dx.doi.org/10.1080/13550280590924214
http://dx.doi.org/10.1371/journal.pone.0014532
http://dx.doi.org/10.1371/journal.pone.0014532
http://dx.doi.org/10.1371/journal.pone.0109890
http://dx.doi.org/10.1371/journal.pone.0109890
http://jvi.asm.org

	MATERIALS AND METHODS
	Cell lines and viruses.
	Virus entry proximity ligation assay (VEPLA).
	Quantification of PLA signal.
	Infection of DRG neurons in cell culture.
	Immunogold labeling for TEM.
	Virus purification.
	Immunoprecipitation and immunoblot assays.
	Protein modeling of gK.

	RESULTS
	Molecular modeling of the effect of the gK31–68 mutation on the predicted structure of gK.
	Glycoprotein gK31–68 is incorporated into virions.
	The UL37 protein interacts with cytoplasmic dynein.
	Detection of UL37 interaction with cytoplasmic dynein and development of the VEPLA.
	The amino terminus of HSV-1 gK is required for the entry of the virus into the DRG axons.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

